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Quantum computer inverting time arrow for macroscopic systems
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Laboratoire de Physique Quantiqueb, Université Paul Sabatier, 31062 Toulouse Cedex 4, France

Received 31 October 2001

Abstract. Since Boltzmann developed the statistical theory for macroscopic thermodynamics the ques-
tion has relentlessly been put forward of how time-reversibility at microscopic level is compatible with
macroscopic irreversibility. Here we show that a quantum computer can efficiently simulate a macroscopic
thermodynamic process with chaotic microscopic dynamics and invert the time arrow even in presence of
quantum errors. In contrast, small errors in classical computer simulation of this dynamics grow exponen-
tially with time and rapidly destroy time-reversibility.

PACS. 03.67.Lx Quantum computation – 05.45.Ac Low-dimensional chaos – 05.45.Mt Semiclassical chaos
(“quantum chaos”)

A legend tells [1] that once Loschmidt asked Boltzmann on
what happens to his statistical theory if one inverts the
velocities of all particles, so that, due to the reversibil-
ity of Newton’s equations, they return from the equilib-
rium to a nonequilibrium initial state. Boltzmann only
replied “then go and invert them”. This problem of the
relationship between the microscopic and macroscopic de-
scriptions of the physical world and time-reversibility has
been hotly debated from the XIXth century up to nowa-
days [2–9]. At present, no modern computer is able to per-
form Boltzmann’s demand for a macroscopic number of
particles. In addition, dynamical chaos [10–13] implies ex-
ponential growth of any imprecision in the inversion that
leads to practical irreversibility. Here we show that a quan-
tum computer [14–18] composed of a few tens of qubits,
and operating even with moderate precision, can perform
Boltzmann’s demand for a macroscopic number of classi-
cal particles. Thus, even in the regime of dynamical chaos,
a realistic quantum computer allows to rebuild a specific
initial distribution from a macroscopic state given by ther-
modynamic laws.

To study the relations between microscopic determin-
istic classical dynamics, macroscopic thermodynamic laws
and quantum computation, we choose a simple area− pre-
serving map:

ȳ = y + x (mod L), x̄ = x+ ȳ (mod 1). (1)

Here the first equation can be seen as a kick which
changes the momentum y of a particle, while the second
one corresponds to a free phase rotation in the interval
−0.5 ≤ x < 0.5; bars mark the new values of the vari-
ables. The map dynamics takes place on a torus of integer
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length L in the y direction. For L = 1 this map reduces
to the well-known Arnold cat map [10], which describes
a fully chaotic dynamics with positive Kolmogorov-Sinai
entropy h ≈ 0.96. As a result, the dynamics is character-
ized by exponential divergence of nearby trajectories, so
that any small error ε (for example round-off error) grows
exponentially with time, and reversibility of a trajectory
is lost after tE ≈ | ln ε|/h map iterations. For ε ∼ 10−8

comparable to ordinary precision of the Pentium III, this
time scale is rather short (tE ≈ 20). For L � 1 chaos
leads to the diffusive spreading of particles in momentum,
which is well described by the Fokker-Planck equation:

∂w(y, t)/∂t = (D/2)∂2w(y, t)/∂2y, (2)

where the diffusion coefficient D ≈ 〈x2〉 = 1/12. Thus
after a time t � 1/h an initial distribution of particles
in (1) evolves towards a Gaussian statistical distribution
w(y, t) = wg(y, t) = exp(−(y − y0)2/(2Dt))/

√
2Dπt with

〈y2〉 = Dt+ y2
0, where y0 = 〈y〉 at t = 0. On a finite torus

this diffusive process relaxes to a homogeneous distribu-
tion in y after a time tD ≈ L2/D.

For the case L = 1 it was shown that a quantum com-
puter can simulate a discretized version of this map with
exponential efficiency [19]. Here we show that for L� 1 a
similar quantum algorithm enables to simulate the evolu-
tion of a macroscopic number of classical particles which
is governed by the thermodynamic diffusion law. To per-
form this evolution on a lattice of size LN2 (with N = 2nq
and L = 2nq′−nq) this algorithm uses three quantum reg-
isters. The first one with nq qubits holds the values of
the coordinate x (xi = −0.5 + i/N, i = 0, ..., N − 1),
the second one with nq′ qubits holds the y coordinates
(yj = −L/2+j/N, j = 0, ..., LN−1) and the last one with
nq′−1 qubits is used as a workspace. The first two registers
describe the discretized classical phase space with L cells
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and N2 points per cell. In this way, the initial positions
of Nd ∼ N2 particles can be represented by one quan-
tum state

∑
i,j aij |xi〉|yj〉|0〉, where ai,j = 0 or 1/

√
Nd.

The quantum algorithm is based on modular additions
performed in a way similar to the one described in [20],
through Toffoli and controlled-not gates (CNOT). It re-
quires 10nq+ 6nq′ −17 gate operations per map iteration,
in contrast to O(22nq ) operations for the classical algo-
rithm. The time inversion is also realized by 8nq+4nq′−13
gate operations which effectively change y into −y half-
way between kicks [19,21]. In this way, the quantum com-
puter acts in a way similar to Maxwell’s demon [22,23]
who reverses the velocity of each individual particle. Thus
the time inversion for exponentially many classical par-
ticles is done in polynomial number of operations of a
quantum computer.

A perfect quantum computer simulates exactly the dis-
cretized map (1). This discrete classical map is perfectly
time-reversible, as well as the continuous one, since the
symplectic structure of the dynamics is preserved by the
discretization. In the field of classical chaos, such a sym-
plectic discretization, which can always be done, is broadly
used for the investigation of chaotic dynamics of area-
preserving maps [24]. This is related to the fact that a uni-
versal classical computing machine can be made reversible
(see e.g. [17]). The optimal discretization is not necessar-
ily the one automatically made by a computer with finite
precision (round-off errors), which can break reversibil-
ity (e.g. [25] for the standard map). For investigation of
the origin of irreversibility it is important to understand
if the time reversibility is preserved/stable in the pres-
ence of small errors done at the moment of time-inversion
tr. Indeed, such errors naturally appear in realistic phys-
ical systems which always have some imperfections. For
a classical computer, e.g. Pentium III iterating map (1),
random errors of amplitude ε in the values of the classical
variables done at tr destroy the time-reversibility of the
map dynamics after tE iterations. This fact is illustrated
in Figure 1 where it is assumed that the demon inverts the
velocities of all trajectories after tr = 35 iterations with a
precision ε. After that, the macroscopic distribution starts
to return back but after tE ≈ | ln ε|/h iterations the errors
become too large and the diffusion process restarts again.
In contrast to that, a quantum computer can simulate
enormous number of orbits going on very fine scales in
the phase space. However, a quantum computer has its
own natural errors which can be viewed as imprecisions of
amplitude ε in the gate operations. The comparison of the
two types of errors natural for classical and quantum com-
puters is displayed in Figure 1. It shows that the quantum
computation with precision ε = 0.01 in each gate at each
map iteration is able to reverse effectively the diffusion
process up to the initial state. That is in striking contrast
with the irreversibility of the classical computation with
errors of amplitude ε = 10−8 made only once at t = tr
when the demon acts. We note that a similar behaviour
takes place also for higher moments of distribution. In
this way, the quantum computer succeeds to reverse the
thermodynamic diffusive process with enormous number
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Fig. 1. Diffusive growth of the second moment 〈y2〉 of the
distribution w(y, t) generated by the map (1) with L = 8, sim-
ulated on a classical (Pentium III) and quantum (“Quantium
I”) computers. At t = tr = 35 one inverts all velocities. For
Pentium III inversion is done with precision ε = 10−4 (dot-
ted line) and ε = 10−8 (dashed line); 106 orbits are simu-
lated, initially distributed inside the demon image (see Fig. 3).
For Quantium I, the computation is done with 26 qubits
(nq = 7, nq′ = 10) (thick full line); each quantum gate operates
with imperfections of amplitude ε = 0.01 (unitary rotation on
a random angle of this amplitude). The straight line shows the
theoretical macroscopic diffusion with D = 1/12.
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Fig. 2. Distribution of particles in y for map (1) simulated
by Pentium III (dashed lines) and Quantium I (circles) for the
case of Figure 1, at t = 20 (dashed lines and open circles) and
t = tr = 35 (dashed lines and filled circles). Full lines show the
theoretical solution of the Fokker-Planck equation (2).

of particles. Indeed, at the moment of inversion tr, the dis-
tribution of particles is a Gaussian of width σ =

√
2Dtr in

agreement with the solution of (2), as is shown in Figure 2.

Figure 3 shows explicitly the distribution in phase
space at different moments of time. The initial distribution
mimics a demon, which at t = tr is transformed to a sta-
tistical homogeneous distribution in the x-direction, with
a smooth variation in y described by (2). The quantum
computer operating with 1% accuracy is able to recover
the initial image with good precision, whereas the classi-
cal computer with round-off errors 10−8 completely fails
to reproduce it. The striking difference between the two
final distributions at t = t2r generated by the two com-
puters can be easily detected from a polynomial number
of measurements. For example, the Fourier harmonics of
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Fig. 3. Evolution of a demon image through map (1). Left
column shows the simulation on Pentium III, right column
on Quantium I. Top: initial distribution in the central cell
(−0.5 ≤ x, y < 0.5). Middle: distribution at t = tr = 35 in
the whole phase space (−0.5 ≤ x < 0.5,−4 ≤ y < 4). Bot-
tom: distribution at t = 2tr = 70 in the two central cells
(−0.5 ≤ x < 0.5,−1 ≤ y < 1). The time-inversion is made
at tr = 35, with accuracy ε = 10−8 for Pentium III (error is
done only at tr), and with accuracy ε = 0.01 for Quantium I
(error is done at each gate operation). Color marks the density
of particles/probability, from blue (minimal) to red (maximal
value). Here as in Figure 1 nq = 7, nq′ = 10, with in total
26 qubits used for Quantium I; for Pentium III, 106 orbits are
simulated.
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Fig. 4. Fidelity f as a function of ε2nqt for the quantum sim-
ulation of the map (1) on Quantium I for L = 8. Symbols show
data for nq = 4, 5, 6, 7 for ε = 10−2 (diamonds), ε = 3× 10−2

(squares) and ε = 0.1 (triangles up). Full line shows nq = 7,
ε = 0.1.

the final Liouville density distribution can be efficiently
obtained with the help of the quantum Fourier transform,
as it was discussed in [19,26]. In the régime of chaos more
and more weight is transfered to high harmonics (with
large wave vectors k ∼ exp(ht)) [13,27]. They involve
very small scales in phase space and therefore exponen-
tially many orbits are required to obtain them on a clas-
sical computer. A measurement procedure in the phase
space (x, y), discussed in [28], is based on the polynomial
number of measurements of only few initial qubits and
gives a coarse-grained image directly in (x, y). However,
as shown in [28], the information about the Liouville den-
sity distribution in (x, y) space can be obtained by classi-
cal Monte Carlo simulations with a comparable efficiency.
On the contrary, in the Fourier space a polynomial num-
ber of measurements of the first nf qubits (nf < nq) gives
a coarse-grained image of probability distribution in the
Fourier space, including very high harmonics, which are
unaccessible to classical computations. In total O(n2

q) op-
erations are required to extract this coarse-grained image
from quantum computation while any known classical al-
gorithm will require O(22nq ) operations. In the quantum
case the precision improves polynomially with the number
of measurements.

The previous results are supported by the data for the
fidelity f(t) defined as the projection of the quantum state
in presence of gate imperfections on the exact state with-
out imperfections. For f = 1 both states coincide, whereas
for f � 1 both distributions are completely different. The
results in Figure 4 show that f(t) smoothly decreases with
number of iterations t even if classical dynamics is expo-
nentially unstable. The probability of transition from the
exact state to other states induced by imperfections can
be estimated as of the order of ε2. Hence, since imperfec-
tions in each gate are assumed to be uncorrelated, f(t)
should drop by nqε2 at each map iteration (for nq ∼ nq′).
This determines a time scale

tf ≈ C/(nqε2) (3)

on which the fidelity of quantum computation for the algo-
rithm is reasonable (f(tf) = 0.5)), even in absence of error
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correction. This scaling is in agreement with the data in
Figure 4 (see also [19]) which give the numerical factor
C ≈ 0.5. This is in sharp contrast with classical errors for
which computation of trajectories remains correct only up
to a time scale tE ≈ | ln ε|/h. It is interesting to note that
the situation is similar to the time evolution of a physical
system in the regime of quantum chaos, which is stable
against small quantum errors even though the underlying
classical dynamics is chaotic [25]. We note that the ap-
plication of quantum error-correcting codes (see e.g. [17])
can give further improvement of computation accuracy.

For simplicity, in the above studies we considered a rel-
atively simple map (1) but it should be stressed that other
area-preserving chaotic maps can be also efficiently simu-
lated on a quantum computer (e.g. the Chirikov standard
map [29] or the perturbed cat map [26]). The stability of
quantum computation of dynamical chaos should apply
for such maps as well.

The relation (3) implies that a quantum computer op-
erating with realistic accuracy can invert velocities of all
particles at a given moment of time, so that a specific ini-
tial state is reliably reproduced from a statistical distribu-
tion described by a diffusive process. Such a simulation for
a macroscopic number of particles Nd can be performed
with few tens of qubits. For example, for Nd = 6.022×1023

(Avogadro’s number) the simulation with L = 8 requires
only 125 qubits. Moreover, according to (3), the accurate
simulation of such an enormously large number of parti-
cles remains reliable (f(t) > 0.5) up to a time t ≈ 150
with a modest gate accuracy ε = 0.01. This time can be
increased with the help of quantum error correcting codes
(see e.g. [17] and references therein) although it will re-
quire larger number of qubits. Such a computation is far
out of reach of any modern supercomputer, and clearly
shows the power of quantum computers. This shows that
this power can be used not only for simulation of quantum
evolution, as envisioned by Feynman [14], but also for clas-
sical dynamics. It also opens interesting perspectives for
cryptography since an initial image can be coded in a ther-
modynamic distribution with very large entropy and then
reliably recovered. Thus quantum computers open new
possibilities for the investigation of the relations between
microscopic deterministic dynamics and macroscopic ther-
modynamic laws.
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